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The randomized communication complexity of F is Ω(𝑝𝑜𝑙𝑦(𝑛)),  
but the quantum communication complexity of F is 𝑂 (log 𝑛).

Quantum versus classical separation is a central goal in understanding the potential 
advantages of quantum computation.

Previous works only for two party communication complexity [BCW98, Raz99, BYJK04, GKK+07, RK11, Gav16, 
GRT22, Gav19, Gav20, GGJL24]

An important open problem [JJGL24] : Explicit separation between the randomized and quantum NOF 
communication

MainTheorem: The randomized simultaneous NOF communication complexity of F is 
Ω(𝑛!/!#),  but the quantum simultaneous NOF communication complexity of F is 𝑂 (log 𝑛).
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Bob

𝑦, 𝑧 ∈ 0,1 $ 𝑥, 𝑧 ∈ 0,1 $

𝐹(𝑥, 𝑦, 𝑧)

Alice

Charlie
𝑥, 𝑦 ∈ 0,1 $

𝜋%(𝑦, 𝑧, 𝑟) 𝜋&(𝑥, 𝑧, 𝑟)

𝐹: 0,1 $× 0,1 $× 0,1 $ → {0,1}

Applications:
Circuit complexity [HG90, PRS97,Cha07, VW07]  
Cryptography [CKGS98, BDFP17]

Public Randomness 𝑟 ∈ 0,1 ∗
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Alice holds y, 𝑧 ∈ 0,1 !, Bob holds x, z ∈ 0,1 !, Charlie holds x, 𝑦 ∈ 0,1 !, they collaborate to 
compute a search problem 𝑆 ⊆ 𝑋× 𝑌× 𝑍× 𝑄 . .A three-party protocol Π	 proceeds as follows:

• Alice sends message  Π" 𝑦, 𝑧, 𝑟  to Charlie. 

• Bob sends messages Π#(𝑥, 𝑧, 𝑟)	to Charlie.

• Charlie outputs a solution 𝑞 ∈ 𝑄 depends on (Π" 𝑦, 𝑧, 𝑟 , Π# 𝑥, 𝑧, 𝑟 , 𝑥, 𝑦, 𝑟)

• The protocol Π computes 𝑆 with error 𝜖 if for any (𝑥,𝑦,𝑧), Pr
$
[(𝑥, 𝑦, 𝑧, 𝑞) 	∈ 	𝑆] 	≥ 	1	 − 	𝜖.	

The randomized simultaneous NOF communication complexity is the maximum total length 
|Π"| 	+	 |Π#|	 over all inputs, denoted by SCC(F).



Warmup:
Quantum versus Classical Separation in 
One-way Communication
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Bob

𝑧 ∈ 0,1 $

𝜋∗(𝑧, 𝑟)

𝑀
Alice

(𝑖, 𝑗, 𝑏)

Alice holds 𝑧 ∈ 0,1 !, Bob holds M ∈ℳ! ,Bob output a
(𝑖, 𝑗, 𝑏) such that (𝑖, 𝑗) is an edge in 𝑀 and 𝑏 = 𝑧%⊕𝑧&.

Hidden Matching Problem(HM)

Theorem 1 [BYJK04] :
The randomized one-way communication complexity of HM is Ω(𝑛!/(),  
but the quantum one-way communication complexity of HM is 𝑂 (log 𝑛).

ℳ$ be the set of perfect matching in the bipartite graph over n nodes.
.

𝑖 𝑗



Lower bound via encoding arguments 7
[BYJK04]: The randomized one-way communication complexity of HM is Ω(𝑛!/().

Alice holds 𝑧 ∈ 0,1 !, Bob holds M ∈ℳ! . Bob
output a (𝑖, 𝑗, 𝑏) such that (𝑖, 𝑗) is an edge in 𝑀
and 𝑏 = 𝑧%⊕𝑧&.

Hidden Matching Problem(HM)

𝑍′ ⊆ 0,1 $

ℳ$

.

𝑛 distinct edges
Fix a transcript 𝜋

M
𝑧) ⊕ 𝑧* = 𝑏 𝑧)! ⊕ 𝑧*! = 𝑏!

𝑧)" ⊕ 𝑧*" = 𝑏(

……..

𝑧)# ⊕ 𝑧*# = 𝑏$

𝑧)!
𝑧*!𝑧)"

𝑧*"

𝑚 = 𝑛/2
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[BYJK04]: The randomized one-way communication complexity of HM is Ω(𝑛!/().

Alice holds 𝑧 ∈ 0,1 !, Bob holds M ∈ℳ!. Bob output a
(𝑖, 𝑗, 𝑏) such that (𝑖, 𝑗) is an edge in 𝑀 and 𝑏 = 𝑧%⊕𝑧&.

Hidden Matching Problem(HM)

≥ 𝑛!/( nodes

𝑛 distinct edges

𝐻 𝑍 − 𝐻 𝑍 𝜋 = Ω(𝑛!/()



Upper bound 9
[BYJK04]: The quantum one-way communication complexity of HM is O(log 𝑛).

Alice sends the state

𝜓 =
1
√𝑛

V
)+!

$

−1 ,$ 𝑖

Bob performs a measurement on the state 𝜓 in the orthonormal basis 

𝐵 = {
1
2
(|𝑘⟩ ± |𝑙⟩)|(𝑘, 𝑙) ∈ 𝑀}.	

The probability that the outcome of the measurement is a basis state !
(
(|𝑘⟩ ± |𝑙⟩	is 

𝜓 1
2
(|𝑘⟩ + |𝑙⟩)

(
	=

1
2𝑛

−1 -& + −1 -ℓ ( 2
𝑛
	 𝑖𝑓 𝑥. 	⊕ 𝑥ℓ 	= 	0	𝑎𝑛𝑑	0	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒	

𝜓 1
2
(|𝑘⟩ − |𝑙⟩)

(
	=

1
2𝑛

−1 -& − −1 -ℓ ( 2
𝑛
	 𝑖𝑓 𝑥. 	⊕ 𝑥ℓ 	= 1	𝑎𝑛𝑑	0	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒	

!
(
(|𝑘⟩ + |𝑙⟩ :

!
(
(|𝑘⟩ − |𝑙⟩) :



Quantum versus Classical Separation in 
Simultaneous NOF Communication via lifting
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Alice holds z ∈ 0,1 !, 𝑦 ∈ 𝑇, Bob holds z ∈ 0,1 !, x ∈
𝑆 , Charlie holds 𝑦 ∈ 𝑇, 𝑥 ∈ 𝑆. Charlie output a (𝑖, 𝑗, 𝑏)
such that (𝑖, 𝑗) is an edge in 𝑀'(),+) and 𝑏 = 𝑧%⊕𝑧&.

Gadgeted Hidden Matching Problem (GHM)

Main Theorem:
The randomized simultaneous NOF communication complexity  communication complexity of GHM is Ω(𝑛!/!#),  
but the quantum simultaneous NOF communication complexity  communication complexity of GHM is 𝑂 (log 𝑛).

Bob

z ∈ 0,1 $ 𝑦 ∈ 𝑇 𝑧 ∈ 0,1 $ 𝑥 ∈ 𝑆

𝐹 𝑧, 𝑔(𝑥, 𝑦)

Alice

Charlie
𝑦 ∈ 𝑇, x ∈ 𝑆

𝜋%(𝑦, 𝑧, 𝑟) 𝜋&(𝑥, 𝑧, 𝑟)

Let 𝑔: 𝑇×𝑆 → [𝑚] be a gadget function



Local-independence protocols 12

Bob
𝑧 ∈ 0,1 $ 𝑥 ∈ 𝑆, 𝑦 ∈ 𝑇

Alice

𝑀 ∈ ℳ(𝑆, 𝑇) = 𝑀0(-,3): 𝑥 ∈ 𝑆, 𝑦 ∈ 𝑇

𝜋∗(𝑧, 𝑟) = (𝜋%∗ 𝑧, 𝑟 , 𝜋&∗ (𝑧, 𝑟))

Lifted Hidden Matching Problem

Bob

𝑧 ∈ 0,1 $ 𝑥 ∈ 𝑆

Alice

Charlie
𝑦 ∈ 𝑇, x ∈ 𝑆

𝜋%(𝑦, 𝑧, 𝑟) 𝜋&(𝑥, 𝑧, 𝑟)

𝜋%∗ 𝑧, 𝑟 = (𝜋% 𝑦, 𝑧, 𝑟 )3∈6

𝜋&∗ 𝑧, 𝑟 = (𝜋& 𝑥, 𝑧, 𝑟 )-∈7

z ∈ 0,1 $ 𝑦 ∈ 𝑇

𝑀0(-,3)

Gadgeted Hidden Matching Problem (GHM)

𝑆 + 𝑇 ⋅ 𝑅𝐶𝐶89: 𝐺𝐻𝑀 = 𝑅𝐶𝐶(𝐿𝐻𝑀)
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The randomized one-way communication complexity of LHM is Ω(𝑛;/!#).

𝑍 ⊆ 0,1 $

ℳ(𝑆, 𝑇)

Fix a transcript 𝜋

Alice holds 𝑧 ∈ 0,1 !, Bob holds M ∈ℳ(𝑆, 𝑇) ⊆ ℳ-

Bob output a (𝑖, 𝑗, 𝑏) such that (𝑖, 𝑗) is an edge in 𝑀 and
𝑏 = 𝑧%⊕𝑧&.

Lifted Hidden Matching Problem (LHM)

≥ 𝑛;/!# nodes

√𝑛 distinct edges

There exist 𝑆, 𝑇 with 𝑆 = 𝑇 = 𝑛!/< such that

Graph lemma
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≥ 𝑛;/!# nodes

√𝑛 distinct edges

There exist 𝑆, 𝑇 with 𝑆 = 𝑇 = 𝑛!/< such that

By the probabilistic method
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• An Ω(𝑛s/t) vs 𝑂(log 𝑛) separation between the randomized and quantum
simultaneous NOF communication 

• An separation between the randomized and quantum one-way NOF 
communication 


