Quantum versus Classical Separation in Simultaneous Number-on-Forehead Communication

Guangxu Yang

Jiapeng Zhang

Quantum versus Classical Separation

Quantum versus classical separation is a central goal in understanding the potential advantages of quantum computation.

Previous works only for two party communication complexity [BCW98, Raz99, BYJK04, GKK+07, RK11, Gav16, GRT22, Gav19, Gav20, GGJL24]

The randomized communication complexity of F is $\Omega(poly(n))$, but the quantum communication complexity of F is $O(\log n)$.

An important open problem [JJGL24]: Explicit separation between the randomized and quantum NOF communication

Main Theorem: The randomized simultaneous NOF communication complexity of F is $\Omega(n^{1/16})$, but the quantum simultaneous NOF communication complexity of F is $O(\log n)$.

Simultaneous Number-on-Forehead Communication

Simultaneous Number-on-Forehead Communication

Alice holds $y, z \in \{0,1\}^n$, Bob holds $x, z \in \{0,1\}^n$, Charlie holds $x, y \in \{0,1\}^n$, they collaborate to compute a search problem $S \subseteq X \times Y \times Z \times Q$.. A three-party protocol Π proceeds as follows:

- Alice sends message $\Pi_A(y,z,r)$ to Charlie.
- Bob sends messages $\Pi_B(x,z,r)$ to Charlie.
- Charlie outputs a solution $q \in Q$ depends on $(\Pi_A(y,z,r), \Pi_B(x,z,r), x, y, r)$
- The protocol Π computes S with error ϵ if for any (x,y,z), $\Pr_r[(x,y,z,q) \in S] \ge 1 \epsilon$.

The randomized simultaneous NOF communication complexity is the maximum total length $|\Pi_A| + |\Pi_B|$ over all inputs, denoted by SCC(F).

Warmup:
Quantum versus Classical Separation in
One-way Communication

Quantum versus Classical Separation in One-way Communication

 \mathcal{M}_n be the set of perfect matching in the bipartite graph over n nodes.

Hidden Matching Problem(HM)

Alice holds $z \in \{0,1\}^n$, Bob holds $M \in \mathcal{M}_n$, Bob output a (i,j,b) such that (i,j) is an edge in M and $b=z_i \oplus z_j$.

(i, j, b)

 $z \in \{0,1\}^n$

Theorem I [BYJK04]:

The randomized one-way communication complexity of HM is $\Omega(n^{1/2})$, but the quantum one-way communication complexity of HM is $O(\log n)$.

Lower bound via encoding arguments

[BYJK04]: The randomized one-way communication complexity of HM is $\Omega(n^{1/2})$.

Hidden Matching Problem(HM)

Alice holds $z \in \{0,1\}^n$, Bob holds $M \in \mathcal{M}_n$. Bob output a (i,j,b) such that (i,j) is an edge in M and $b=z_i \oplus z_j$.

Lower bound via encoding arguments

[BYJK04]: The randomized one-way communication complexity of HM is $\Omega(n^{1/2})$.

Hidden Matching Problem(HM)

Alice holds $z \in \{0,1\}^n$, Bob holds $M \in \mathcal{M}_n$. Bob output a (i,j,b) such that (i,j) is an edge in M and $b=z_i \oplus z_j$.

Upper bound

[BYJK04]: The quantum one-way communication complexity of HM is $O(\log n)$.

Alice sends the state

$$|\psi\rangle = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} (-1)^{z_i} |i\rangle$$

Bob performs a measurement on the state $|\psi\rangle$ in the orthonormal basis

$$B = \{ \frac{1}{\sqrt{2}} (|k\rangle \pm |l\rangle) | (k, l) \in M \}.$$

The probability that the outcome of the measurement is a basis state $\frac{1}{\sqrt{2}}(|k\rangle \pm |l\rangle$ is

$$\frac{1}{\sqrt{2}}(|k\rangle + |l\rangle : \qquad \left|\left\langle\psi\left|\frac{1}{\sqrt{2}}(|k\rangle + |l\rangle\right)\right\rangle\right|^2 = \frac{1}{2n}\left((-1)^{x_k} + (-1)^{x_\ell}\right)^2 \qquad \frac{2}{n} \ if \ x_k \oplus x_\ell = 0 \ and \ 0 \ otherwise$$

$$\frac{1}{\sqrt{2}}(|k\rangle - |l\rangle): \quad \left|\left\langle\psi\left|\frac{1}{\sqrt{2}}(|k\rangle - |l\rangle\right)\right\rangle\right|^2 = \frac{1}{2n}\left((-1)^{x_k} - (-1)^{x_\ell}\right)^2 \qquad \frac{2}{n} \text{ if } x_k \oplus x_\ell = 1 \text{ and } 0 \text{ otherwise}$$

Quantum versus Classical Separation in Simultaneous NOF Communication via lifting

Quantum versus Classical Separation

Let $g: T \times S \rightarrow [m]$ be a gadget function

Gadgeted Hidden Matching Problem (GHM)

Alice holds $z \in \{0,1\}^n$, $y \in T$, Bob holds $z \in \{0,1\}^n$, $x \in S$, Charlie holds $y \in T$, $x \in S$. Charlie output a (i,j,b) such that (i,j) is an edge in $M_{g(x,y)}$ and $b = z_i \oplus z_j$.

Main Theorem:

The randomized simultaneous NOF communication complexity communication complexity of GHM is $\Omega(n^{1/16})$, but the quantum simultaneous NOF communication complexity communication complexity of GHM is $O(\log n)$.

Local-independence protocols

Gadgeted Hidden Matching Problem (GHM)

Proof via encoding arguments

The randomized one-way communication complexity of LHM is $\Omega(n^{5/16})$.

Lifted Hidden Matching Problem (LHM)

Alice holds $z \in \{0,1\}^n$, Bob holds $M \in \mathcal{M}(S,T) \subseteq \mathcal{M}_n$

Bob output a (i, j, b) such that (i, j) is an edge in M and $b = z_i \oplus z_j$.

Graph lemma

There exist S, T with $|S| = |T| = n^{1/4}$ such that

Fix a transcript π

Proof of the graph lemma

By the probabilistic method

There exist S, T with $|S| = |T| = n^{1/4}$ such that

Open Problems

• An $\Omega(n^{1/2})$ vs $O(\log n)$ separation between the randomized and quantum simultaneous NOF communication

An separation between the randomized and quantum one-way NOF communication