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One-Way Number-on-Forehead Communication2

Bob

𝑦, 𝑧 ∈ 𝑁 ×[𝑁]
𝑥, 𝑧 ∈ 𝑁 ×[𝑁]

𝐹(𝑥, 𝑦, 𝑧)

Alice

Charlie
𝑥, 𝑦 ∈ 𝑁 ×[𝑁]

𝜋!(𝑦, 𝑧) 𝜋"(𝑥, 𝑧)

𝜋!(𝑦, 𝑧)

𝐹: 𝑁 # → {0,1}

Applications:
Circuit complexity [HG90, PRS97,Cha07, VW07],  
Cryptography [CKGS98, BDFP17], 
Streaming algorithms [KMPV19, VW07].



One-Way Number-on-Forehead Communication3

Alice holds y, 𝑧 ∈ [𝑁], Bob holds x, z ∈ 𝑁 , Charlie holds x, 𝑦 ∈ 𝑁 , they collaborate to 
compute a function F: 𝑁 ! →	{0,1}	. A three-party protocol Π	 proceeds as follows:

• Alice sends message  Π" 𝑦, 𝑧  to Bob and Charlie. 

• Bob sends messages Π#(𝑥, 𝑧, Π"(𝑦, 𝑧))	to Charlie.

• Charlie outputs F(𝑥, 𝑦, 𝑧)	 depends on (Π" 𝑦, 𝑧 , Π# 𝑥, 𝑧, Π" 𝑦, 𝑧 , 𝑥, 𝑦).

The deterministic one-way NOF communication complexity is the maximum total length 
|Π"| 	+	 |Π#|	 over all inputs, denoted by OCC(F).

One-way Number-on-Forehead Communication Complexity

An important open problem [BDPW10] : Optimal explicit separation between the randomized and deterministic 
one-way NOF communication

F: 𝑁 # →	 {0,1}	 The deterministic one-way NOF communication complexity of F is Ω(log𝑁 ),  
but the randomized one-way NOF communication complexity of F is 𝑂 (1).

Previous results: Ω log log𝑁 vs 𝑂(1) [BGG06] and Ω log$/# 𝑁 vs 𝑂(1) [KLM24] 



Deterministic Lifting Theorems for 
One-Way Number-on-Forehead 
Communication
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Proving analogs of query to communication lifting theorems for even 3 parties in the number-on-forehead 
(NOF) communication model would be a huge breakthrough.
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Bob

𝑧 ∈ [𝑁]

𝜋(𝑧)

𝑤 ∈ [𝑁]

𝑓(𝑧, 𝑤)

Alice holds z ∈ 𝑁 and Bob holds w ∈ [𝑁]. Alice sends a single message 𝜋(z) to Bob, and Bob outputs 
𝑓 (z, w) based on w and the received message. 

The deterministic communication complexity is the maximum length of the message | 𝜋(z) | over all 
possible inputs, denoted by DCC(𝑓 ).

One-way Communication Complexity

Alice
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For any 𝑓: 𝑁 × 𝑁 → {0,1}, we  use 𝑀(𝑓) to denote the communication matrix 
corresponding to 𝑓 and 𝑍 denote the set of distinct rows of 𝑀(𝑓).

The deterministic one-way communication complexity of 𝑓 is log |𝑍|.

Theorem 1

The communication matrix of 𝑓
1 1 1 0 0 0 0 0
1 1 1 0 0 0 0 0

1 1 1 0 0 0 0 0
0 0 0 1 1 1 0 0
0 0 0 1 1 1 0 0
0 0 0 1 1 1 0 0
0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 1

1 1 1 0 0 0 0 0
1 1 1 0 0 0 0 0

1 1 1 0 0 0 0 0

0 0 0 1 1 1 0 0
0 0 0 1 1 1 0 0
0 0 0 1 1 1 0 0

0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 1

[𝑁]

𝜋$

𝜋&

𝜋#

Π

𝑀(𝑓) is an matrix where each entry 
at position (z, 𝑤)	is 𝑓(𝑧, 𝑤)

For any 𝑧', 𝑧$ ∈ 𝑍,There is a 𝑣 ∈ [𝑁]
such that 𝑓 𝑧', 𝑣 ≠ 𝑓(𝑧$, 𝑣).  
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For any 𝑓: 𝑁 × 𝑁 → {0,1}, we  use 𝑀(𝑓) to denote the communication matrix 
corresponding to 𝑓 and 𝑍 denote the set of distinct rows of 𝑀(𝑓).

The deterministic one-way communication complexity of 𝑓 is log |𝑍|.

Theorem 1

The communication matrix of 𝑓
𝟏 1 1 0 0 0 0 0
1 1 1 0 0 0 0 0

1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0
0 0 0 1 1 1 0 0
0 0 0 1 1 1 0 0
0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 1

1 1 1 0 0 0 0 0
1 1 1 0 0 0 0 0

1 1 0 0 0 0 0 0

0 0 0 1 1 1 0 0
0 0 0 1 1 1 0 0
0 0 0 1 1 1 0 0

0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 1

[𝑁]

𝜋$

𝜋&

𝜋#

Π

𝑦
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The deterministic one-way communication complexity of Equality function (EQ) is log𝑁

Theorem 2

𝟏

1
1

1
1

1
1

1

[𝑁]

[𝑁]

𝐸𝑄 𝑧, 𝑤 = 1 if and only if z = 𝑤

An optimal separation between the randomized and deterministic:

The deterministic one-way communication complexity of EQ is Ω(log𝑁 ),  
but the randomized one-way communication complexity of EQ is 𝑂 (1).

Can we prove the optimal separation between the randomized 
and deterministic one-way NOF communication via EQ ?

By hashing
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Bob
𝑧 ∈ 0,1 (

𝜋(𝑧)

𝑤 ∈ 0,1 (

𝑓(𝑧, 𝑤)

Alice

Bob

𝑦, 𝑧 ∈ 0,1 ( 𝑥, 𝑧 ∈ 0,1 (

𝐹 𝑥, 𝑦, 𝑧 = 𝑓(𝑧, 𝑔 𝑥, 𝑦 )

Alice

Charlie
𝑥, 𝑦 ∈ 0,1 (

𝜋!(𝑦, 𝑧) 𝜋"(𝑥, 𝑧)

𝐎𝐂𝐂 𝐅 = 𝛀(𝐃𝐂𝐂 𝐟 )
𝑤 = 𝑔(𝑥, 𝑦)
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Bob

𝑦, 𝑧 ∈ 0,1 ( 𝑥, 𝑧 ∈ 0,1 (

𝐹 𝑥, 𝑦, 𝑧 = 𝑓(𝑧, 𝑔 𝑥, 𝑦 )

Alice

Charlie
𝑥, 𝑦 ∈ 0,1 (

𝜋!(𝑦, 𝑧) 𝜋"(𝑥, 𝑧)

The communication matrix of 𝑔: 𝑁 × 𝑁 → [𝑞]

𝑋 ⊆ [𝑁]

𝑌 ⊆ [𝑁]

𝑔 𝑥, 𝑦 : 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 = [𝑞]

𝐸𝑄 𝑥, 𝑦, 𝑧 = 1 if and only if 𝑥 = 𝑦 = 𝑧

𝑋 |𝑌| ≥ )!

*
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The communication matrix of IP: 𝑁 × 𝑁 → [𝑞]

𝑋

𝑌

IP 𝑥, 𝑦 : 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 = [𝑞]

Set 𝑁	 = 	𝑞$ for some constant 𝑘 ≥ 	5, then for any 𝑋, 𝑌 ⊂
	[𝑁] with size 𝑋 × 𝑌 ≥ %+

& , 

IP 𝑥, 𝑦 : 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 = [𝑞]

Let 𝑞 be a prime power and 𝑘 ≥ 5. we define the gadget 
function 𝑔 is the inner-product function IP ∶ 𝐹&$ × 𝐹&$ → 𝐹&
given by

IP = ⟨ 𝑥, 𝑦 ⟩ = ∑'()$ 𝑥'𝑦' 𝑚𝑜𝑑 𝑞

Definition 3

Two Source Extractor Lemma

By standard fourier analysis
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For any two-party function 𝑓: 𝑞 × 𝑞 → {0,1} and a gadget function IP: 𝑁 × 𝑁 → [𝑞], the lifted problem, denoted by 
𝑓 ∘ IP: 𝑁 × 𝑁 × 𝑞 → {0,1} is defined by,

𝑓 ∘ IP(𝑥, 𝑦, 𝑧) = 𝑓(𝑧, IP(𝑥, 𝑦))

In the NOF setting, we assume that Alice has the input (y,z), Bob has the input (x,z), and Charlie has the input (x, y).

For any Boolean function  𝑓 ∶ 𝑞 × 𝑞 → {0,1} , we have

OCC(𝑓 ∘ IP) = Θ(DCC(𝑓))

Definition 4 [Lifted problem in NOF]

Deterministic Lifting Theorem
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Bob

𝑦, 𝑧 ∈ 0,1 ( 𝑥, 𝑧 ∈ 0,1 (

𝐹 𝑥, 𝑦, 𝑧 = 𝑓(𝑧, IP 𝑥, 𝑦 )

Alice

Charlie
𝑥, 𝑦 ∈ 0,1 (

𝜋!(𝑦, 𝑧) 𝜋"(𝑥, 𝑧)

Our goal: OCC(𝑓 ∘ IP) = Θ(DCC(𝑓))

Theorem 1:

The deterministic one-way communication complexity of 𝑓 is log |𝑍|.

OCC(𝑓 ∘ IP) = Ω(log |𝑍|)

OCC(𝑓 ∘ IP) = O(DCC(𝑓))

Proof by contradiction:
Theorem 2
For any protocol Π with deterministic one-way NOF

communication complexity at most ,-. |0|
&

	, there exists (𝜋!∗ , 𝜋"∗ )
along with distinct elements 𝑧', 𝑧$ ∈ 	 [𝑍] and a pair 𝑥, 𝑦 ∈
𝑁 ×	[𝑁], such that 

Π!∗ 𝑦, 𝑧$	 = Π!∗ 𝑦, 𝑧' = 𝜋!∗ 𝑎𝑛𝑑 Π"∗ 𝑥, 𝑧$ = Π"∗ 𝑥, 𝑧' = 𝜋"∗
But

𝑓 𝑧', IP 𝑥, 𝑦 ≠ 𝑓 𝑧$, IP 𝑥, 𝑦
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N ×[𝑁]𝑍 ⊆ [𝑞]

𝑧'

𝑧$
(𝑥, 𝑦)

𝑓 𝑧', IP 𝑥, 𝑦 ≠ 𝑓 𝑧$, IP 𝑥, 𝑦

Theorem 2: For any protocol Π with deterministic one-way NOF

communication complexity at most ,-. |0|
&

	, there exists (𝜋!∗ , 𝜋"∗ )
along with distinct elements 𝑧', 𝑧$ ∈ 	 [𝑍] and a pair 𝑥, 𝑦 ∈
𝑁 ×	[𝑁], such that 

Π!∗ 𝑦, 𝑧$	 = Π!∗ 𝑦, 𝑧' = 𝜋!∗ 𝑎𝑛𝑑 Π"∗ 𝑥, 𝑧$ = Π"∗ 𝑥, 𝑧' = 𝜋"∗
But

𝑓 𝑧', IP 𝑥, 𝑦 ≠ 𝑓 𝑧$, IP 𝑥, 𝑦
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𝑍 ⊆ [𝑞] 𝑅 = N ×[𝑁]

For any protocol Π with deterministic one-way NOF communication 
complexity  *+, |.|/ 	, there exists a messgae pair (𝜋"∗, 𝜋#∗ ) such that the 
following set 𝐸 has size at least

𝐸 ≥
𝑁/ ⋅ 𝑍

𝑍
= 𝑁/ ⋅ √|𝑍|

Here, the set 𝐸 is defined as:

𝐸 = { 𝑧, 𝑥, 𝑦 ∈ 𝑍 × 𝑁 × 𝑁 : Π"∗ 𝑦, 𝑧 = 𝜋"∗ 𝑎𝑛𝑑 Π#∗ 𝑥, 𝑧 = 𝜋#∗ }.

𝐸 ≥ 𝑁& ⋅ √|𝑍|

𝐺 = (𝑍 ∪ 𝑅, 𝐸)
Lemma 1

Proof: By the pigeonhole principle. The number of inputs is 𝑁& ⋅ |𝑍|

and the number of messages is 2,-.
"
! = |𝑍|.

𝑧

(𝑥, 𝑦)
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𝑍 ⊆ [𝑞] N ×[𝑁]
𝑍 ⊆ [𝑞] N ×[𝑁]

𝑧'

𝑧$

Let 𝐺 = (𝑍 ∪ 𝑅, 𝐸) be a bipartite graph with 𝑅 = 𝑁 ×[𝑁] and 𝐸 ≥ 𝑁/ ⋅ |𝑍|. Then there
exists distinct z1, 𝑧) ∈ 𝑍 such that

𝑁 𝑧1 ∩ 𝑁 𝑧) ≥
𝑁/

|𝑍|

where 𝑁 𝑧 ⊆ 𝑅 denote the neighborhoods of z in 𝑅.

Graph Lemma

≥ )!

0
≥ )!

*
 



Proof of the graph lemma
17Proof of the Graph Lemma:

We prove it by a probabilistic argument. We random sample 𝑧', 𝑧$ uniformly,

𝐸[ 𝑁 𝑧' ∩ 𝑁 𝑧$ ] ≥
𝑁&

|𝑍|

Let 𝕀 𝑧, 𝑟 : = 𝕀{ 𝑧, 𝑟 ∈ 𝐸}	 denote the indicator function for whether the edge  (𝑧, 𝑟)	 exists in 𝐸
Then we have

E N z# ∩𝑁 z$ ='
%∈'

E 𝕀 𝑧#, 𝑟 ⋅ 𝕀 𝑧$, 𝑟 ='
%∈'

𝐸 𝕀 𝑧, 𝑟 ( ≥
1
𝑁( ⋅ '

%∈'

𝐸 𝕀 𝑧, 𝑟
(

=
1
𝑁( ⋅ '

%∈'

deg 𝑟
𝑍

(

=
1
𝑁( ⋅

𝐸 (

𝑍 ( ≥
𝑁(

|𝑍|

Cauchy–Schwarz inequality
and 𝑅 = 𝑁& 𝐸 ≥ 𝑁& ⋅ |𝑍|𝐸 = l

2∈4

deg(𝑟)
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The communication matrix of IP: 𝑁 × 𝑁 → [𝑞]

𝑋

𝑌

𝑍 ⊆ [𝑞] N ×[𝑁]

𝑧'

𝑧$

Rectangle Lemma

Let 𝑅 = { 𝑥, 𝑦 : 𝑥, 𝑦, 𝑧1 ∈ 𝐸} ∩	{ 𝑥, 𝑦 : 𝑥, 𝑦, 𝑧)	 ∈ 𝐸}. Then

𝑅 is a rectangle,, i.e., 𝑅	 = 	𝑋	×	𝑌	for some 𝑋, 𝑌	 ⊆ 0, 1 2.

where 𝐸 = { 𝑧, 𝑥, 𝑦 ∈ 𝑍 × 𝑁 × 𝑁 : Π"∗ 𝑦, 𝑧 = 𝜋"∗ 𝑎𝑛𝑑 Π#∗ 𝑥, 𝑧 = 𝜋#∗ }.

≥ )!

*
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The communication matrix of IP: 𝑁 × 𝑁 → [𝑞]

𝑋

𝑌

𝑍 ⊆ [𝑞] N ×[𝑁]

𝑧'

𝑧$

Let 𝑅 = { 𝑥, 𝑦 : 𝑥, 𝑦, 𝑧' ∈ 𝐸} ∩ 	 { 𝑥, 𝑦 : 𝑥, 𝑦, 𝑧$ ∈ 𝐸}.

𝑅' 𝑅$
𝐸 = { 𝑧, 𝑥, 𝑦 ∈ 𝑍 × 𝑁 × 𝑁 : Π!∗ 𝑦, 𝑧 = 𝜋!∗ 𝑎𝑛𝑑 Π"∗ 𝑥, 𝑧 = 𝜋"∗ }.

𝑅' = 𝑋'×𝑌' is a rectangle and 𝑅$ = 𝑋$×𝑌$ is a rectangle 𝑅 = (𝑋'∩ 𝑋$)×(𝑌'∩ 𝑌$)
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The communication matrix of IP: 𝑁 × 𝑁 → [𝑞]

𝑋

𝑌

𝑍 ⊆ [𝑞] N ×[𝑁]

𝑧'

𝑧$

IP 𝑥, 𝑦 : 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 = [𝑞]𝑧', 𝑧$ ∈ 𝑍 𝑎𝑛𝑑 𝑧' ≠ 𝑧$
• Recall that 𝑧1, 𝑧) ∈ 𝑍 𝑎𝑛𝑑 𝑧1 ≠ 𝑧), there is a 𝑣 ∈ [𝑞] such that 𝑓 𝑧, 𝑣 ≠ 𝑓(𝑧′, 𝑣).   [One way DCC of 𝑓]

• Since IP 𝑥, 𝑦 : 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 = [𝑞],  there is a pair 𝑥, 𝑦 ∈ 𝑋× 𝑌 such that IP 𝑥, 𝑦 = 𝑣. [Two Source Extractor]

• We have 𝑓 𝑧1, IP 𝑥, 𝑦 ≠ 𝑓 𝑧), IP 𝑥, 𝑦 . [One way NOF DCC of 𝑓 ∘ IP]

Two Source Extractor Lemma

≥ )!

*
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𝑋

𝑌

IP 𝑥, 𝑦 : 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 = [𝑞]

𝑧', 𝑧$ ∈ 𝑍 𝑎𝑛𝑑 𝑧' ≠ 𝑧$
Two Source Extractor Lemma

𝑍 ⊆ [𝑞] N ×[𝑁] 𝑍 ⊆ [𝑞] N ×[𝑁]

𝑧'

𝑧$

𝐸 ≥ 𝑁& ⋅ |𝑍|

≥ )!

*
 

N ×[𝑁]𝑍 ⊆ [𝑞]

𝑧'

𝑧$
𝑥, 𝑦 statisfies IP 𝑥, 𝑦 = 𝑣

[One way DCC of 𝑓]
There is a 𝑣 ∈ [𝑞] such 
that 𝑓 𝑧', 𝑣 ≠ 𝑓(𝑧$, 𝑣).  

Rectangle Lemma
Graph LemmaPigeonhole principle

Π

OCC Π ≤
log |𝑍|
2

𝑓 𝑧', IP 𝑥, 𝑦 ≠ 𝑓 z$, IP 𝑥, 𝑦
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For any Boolean function  𝑓 ∶ 𝑁 × 𝑁 → {0,1} , we have

OCC(𝑓 ∘ IP) = Θ(DCC(𝑓))

The deterministic one-way NOF communication complexity of EQ ∘ IP is Ω(log𝑁 ),  
but the randomized one-way NOF communication complexity of EQ ∘ IP is 𝑂 (1).

• One way NOF deterministic lifting theorem

• An optimal explicit separation between the randomized and deterministic 
one-way NOF communication 

• A new proof of the Ω(𝑛) deterministic one-way three-party NOF communication 
complexity of set disjointness
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For any Boolean function  𝑓 ∶ 𝑁 × 𝑁 → {0,1} , we have

ORCC(𝑓 ∘ IP) = Θ(RCC(𝑓))

• One way NOF randomized lifting theorem

• An optimal explicit separation between the randomized and quantum one-
way NOF communication 

• A proof of the Ω(𝑛) randomized one-way three-party NOF communication complexity 
of set disjointness (Best known bound is Ω(√𝑛)


