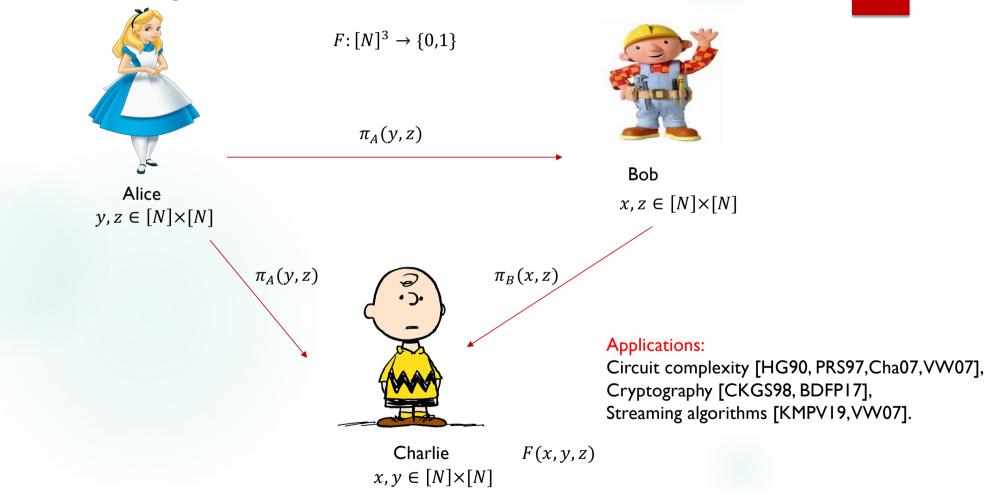
Deterministic Lifting Theorems for One-Way Number-on-Forehead Communication

Guangxu Yang Jiapeng Zhang

One-Way Number-on-Forehead Communication



One-Way Number-on-Forehead Communication

One-way Number-on-Forehead Communication Complexity

Alice holds $y, z \in [N]$, Bob holds $x, z \in [N]$, Charlie holds $x, y \in [N]$, they collaborate to compute a function $F: [N]^3 \rightarrow \{0,1\}$. A three-party protocol Π proceeds as follows:

- Alice sends message $\Pi_A(y, z)$ to Bob and Charlie.
- Bob sends messages $\Pi_B(x, z, \Pi_A(y, z))$ to Charlie.
- Charlie outputs F(x, y, z) depends on $(\Pi_A(y, z), \Pi_B(x, z, \Pi_A(y, z)), x, y)$.

The deterministic one-way NOF communication complexity is the maximum total length $|\Pi_A| + |\Pi_B|$ over all inputs, denoted by OCC(F).

An important open problem [BDPW10] : Optimal explicit separation between the randomized and deterministic one-way NOF communication

F: $[N]^3 \rightarrow \{0,1\}$ The deterministic one-way NOF communication complexity of F is $\Omega(\log N)$, but the randomized one-way NOF communication complexity of F is O(1).

Previous results: $\Omega(\log \log N)$ vs O(1) [BGG06] and $\Omega(\log^{1/3} N)$ vs O(1) [KLM24]

4

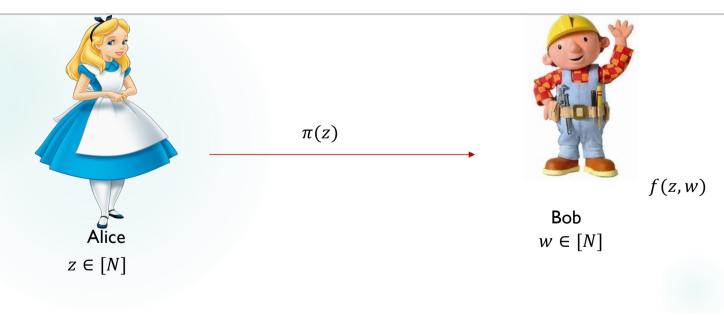
Deterministic Lifting Theorems for One-Way Number-on-Forehead Communication

Proving analogs of query to communication lifting theorems for even 3 parties in the number-on-forehead (NOF) communication model would be a huge breakthrough.

One-way Communication Complexity

Alice holds $z \in [N]$ and Bob holds $w \in [N]$. Alice sends a single message $\pi(z)$ to Bob, and Bob outputs f(z, w) based on w and the received message.

The deterministic communication complexity is the maximum length of the message $| \pi(z) |$ over all possible inputs, denoted by DCC(f).



Theorem I

For any $z_0, z_1 \in Z$, There is a $v \in [N]$ such that $f(z_0, v) \neq f(z_1, v)$. M(f) is an matrix where each entry at position (z, w) is f(z, w)

6

For any $f: [N] \times [N] \to \{0,1\}$, we use M(f) to denote the communication matrix corresponding to f and Z denote the set of distinct rows of M(f).

The deterministic one-way communication complexity of f is $\log |Z|$.

The communication matrix of f											
	1	1	1	0	0	0	0	0			
	1	1	1	0	0	0	0	0			
	1	1	1	0	0	0	0	0			
	0	0	0	1	1	1	0	0			
	0	0	0	1	1	1	0	0			
	0	0	0	1	1	1	0	0			
	0	0	0	0	0	0	1	1			
	0	0	0	0	0	0	1	1			

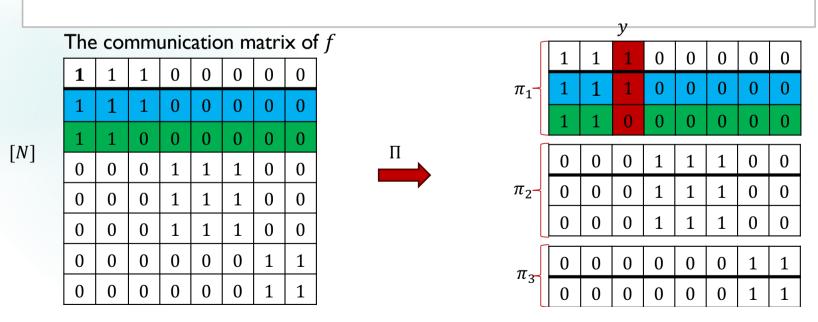
ſ	1	1	1	0	0	0	0	0
π_1	1	1	1	0	0	0	0	0
	1	1	1	0	0	0	0	0
	0	0	0	1	1	1	0	0
π_2 -	0	0	0	1	1	1	0	0
	0	0	0	1	1	1	0	0
۱								
π_{3}	0	0	0	0	0	0	1	1
~3	0	0	0	0	0	0	1	1

[N]

Theorem I

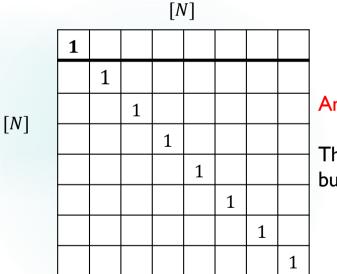
For any $f: [N] \times [N] \to \{0,1\}$, we use M(f) to denote the communication matrix corresponding to f and Z denote the set of distinct rows of M(f).

The deterministic one-way communication complexity of f is $\log |Z|$.



Theorem 2

The deterministic one-way communication complexity of Equality function (EQ) is $\log N$



An optimal separation between the randomized and deterministic:

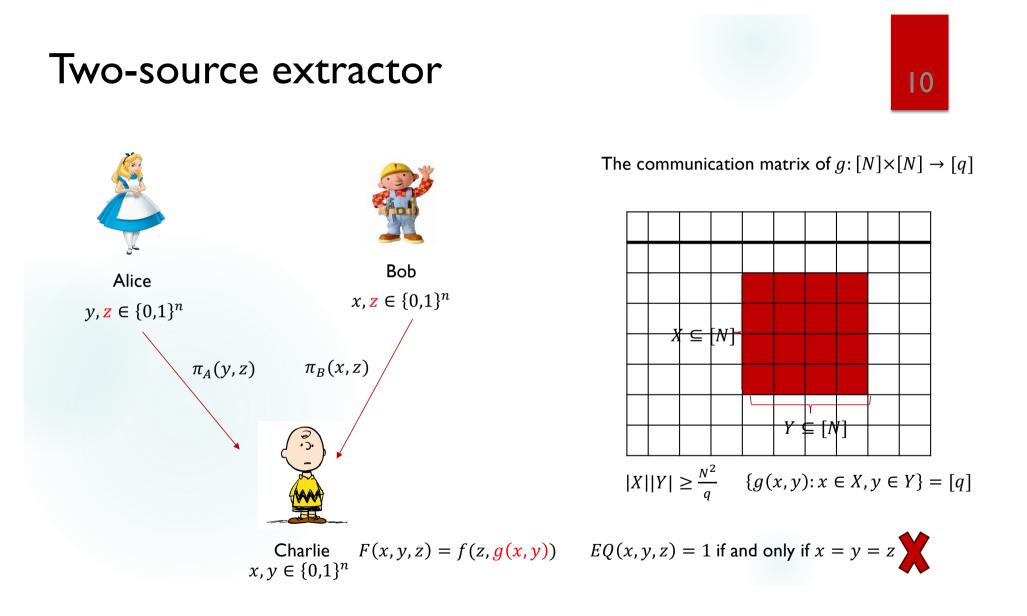
The deterministic one-way communication complexity of EQ is $\Omega(\log N)$, but the randomized one-way communication complexity of EQ is O(1). By hashing

Can we prove the optimal separation between the randomized and deterministic one-way NOF communication via EQ ?

EQ(z, w) = 1 if and only if z = w

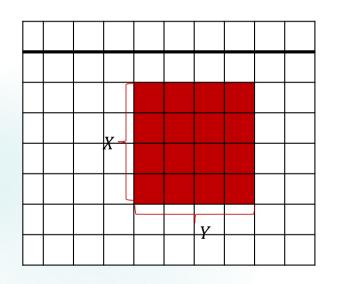
Deterministic Lifting Theorem

 $\pi(z)$ Bob Alice $x, \mathbf{z} \in \{0, 1\}^n$ $y, \mathbf{z} \in \{0,1\}^n$ Alice Bob $w \in \{0,1\}^n$ $\mathbf{z} \in \{0,1\}^n$ $\pi_B(x,z)$ $\pi_A(y,z)$ f(z,w)w = g(x, y) $OCC(F) = \Omega(DCC(f))$ Charlie $x, y \in \{0,1\}^n$ F(x, y, z) = f(z, g(x, y))



Two-source extractor

The communication matrix of IP: $[N] \times [N] \rightarrow [q]$



 $\{\mathrm{IP}(x, y) \colon x \in X, y \in Y\} = [q]$

Definition 3

Let q be a prime power and $k \ge 5$. we define the gadget function g is the inner-product function IP : $F_q^k \times F_q^k \to F_q$ given by

$$IP = \langle x, y \rangle = \sum_{i=1}^{k} x_i y_i \mod q$$

By standard fourier analysis

Two Source Extractor LemmaSet $N = q^k$ for some constant $k \ge 5$, then for any $X, Y \subset$ [N] with size $|X| \times |Y| \ge \frac{N^2}{q}$, $\{IP(x, y): x \in X, y \in Y\} = [q]$

Deterministic Lifting Theorem

Definition 4 [Lifted problem in NOF]

For any two-party function $f: [q] \times [q] \rightarrow \{0,1\}$ and a gadget function IP: $[N] \times [N] \rightarrow [q]$, the lifted problem, denoted by $f \circ \text{IP}: [N] \times [N] \times [q] \rightarrow \{0,1\}$ is defined by,

 $f \circ IP(x, y, z) = f(z, IP(x, y))$

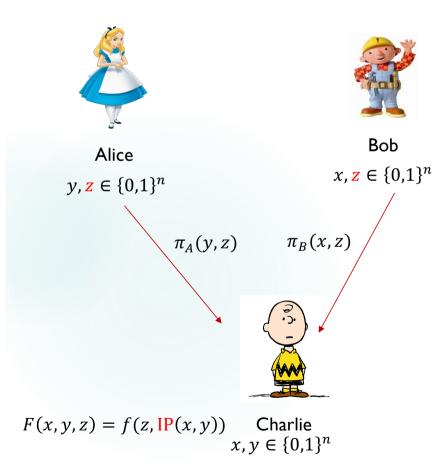
In the NOF setting, we assume that Alice has the input (y,z), Bob has the input (x,z), and Charlie has the input (x, y).

Deterministic Lifting Theorem

For any Boolean function $f: [q] \times [q] \rightarrow \{0,1\}$, we have

 $OCC(f \circ IP) = \Theta(DCC(f))$

The Proof of Deterministic Lifting Theorems



Our goal: $OCC(f \circ IP) = \Theta(DCC(f))$

 $OCC(f \circ IP) = O(DCC(f))$

Theorem I:

The deterministic one-way communication complexity of f is $\log |Z|$.

$$OCC(f \circ IP) = \Omega(\log |Z|)$$

Proof by contradiction:

Theorem 2

For any protocol Π with deterministic one-way NOF communication complexity at most $\frac{\log |Z|}{2}$, there exists (π_A^*, π_B^*) along with distinct elements $z_0, z_1 \in [Z]$ and a pair $(x, y) \in [N] \times [N]$, such that

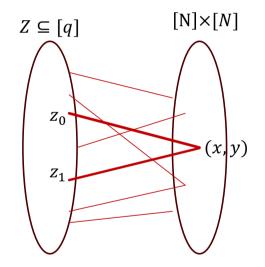
 $\Pi_A^*(y, z_1) = \Pi_A^*(y, z_0) = \pi_A^* \text{ and } \Pi_B^*(x, z_1) = \Pi_B^*(x, z_0) = \pi_B^*$ But

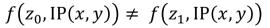
$$f(z_0, \operatorname{IP}(x, y)) \neq f(z_1, \operatorname{IP}(x, y))$$

Theorem 2: For any protocol Π with deterministic one-way NOF communication complexity at most $\frac{\log |Z|}{2}$, there exists (π_A^*, π_B^*) along with distinct elements $z_0, z_1 \in [Z]$ and a pair $(x, y) \in [N] \times [N]$, such that

 $\Pi_A^*(y, z_1) = \Pi_A^*(y, z_0) = \pi_A^* \text{ and } \Pi_B^*(x, z_1) = \Pi_B^*(x, z_0) = \pi_B^*$ But

 $f(z_0, IP(x, y)) \neq f(z_1, IP(x, y))$





Lemma I

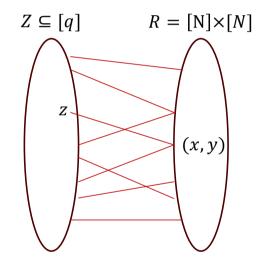
For any protocol Π with deterministic one-way NOF communication complexity $\frac{\log |Z|}{2}$, there exists a messgae pair (π_A^*, π_B^*) such that the following set *E* has size at least

$$|E| \ge \frac{N^2 \cdot |Z|}{\sqrt{|Z|}} = N^2 \cdot \sqrt{|Z|}$$

Here, the set E is defined as:

$$E = \{ (z, x, y) \in Z \times [N] \times [N] : \Pi_A^*(y, z) = \pi_A^* \text{ and } \Pi_B^*(x, z) = \pi_B^* \}.$$

Proof: By the pigeonhole principle. The number of inputs is $N^2 \cdot |Z|$ and the number of messages is $2^{\log \frac{|Z|}{2}} = \sqrt{|Z|}$. $G = (Z \cup R, E)$



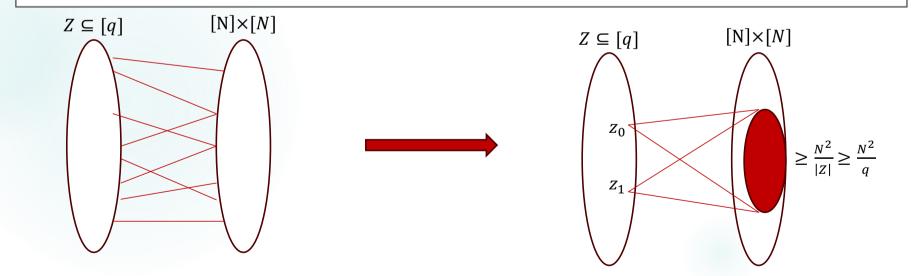
$$|E| \ge N^2 \cdot \sqrt{|Z|}$$

Graph Lemma

Let $G = (Z \cup R, E)$ be a bipartite graph with $R = [N] \times [N]$ and $|E| \ge N^2 \cdot \sqrt{|Z|}$. Then there exists distinct $z_0, z_1 \in Z$ such that

$$|N(z_0) \cap N(z_1)| \ge \frac{N^2}{|Z|}$$

where $N(z) \subseteq R$ denote the neighborhoods of z in R.



Proof of the graph lemma

Proof of the Graph Lemma:

We prove it by a probabilistic argument. We random sample z_0 , z_1 uniformly,

$$E[|N(z_0) \cap N(z_1)|] \ge \frac{N^2}{|Z|}$$

Let $\mathbb{I}(z,r) := \mathbb{I}\{(z,r) \in E\}$ denote the indicator function for whether the edge (z,r) exists in EThen we have

$$E[N(z_0) \cap N(z_1)] = \sum_{r \in R} E[\mathbb{I}(z_0, r) \cdot \mathbb{I}(z_1, r)] = \sum_{r \in R} (E[\mathbb{I}(z, r)])^2 \ge \frac{1}{N^2} \cdot \left(\sum_{r \in R} E[\mathbb{I}(z, r)]\right)^2 = \frac{1}{N^2} \cdot \left(\sum_{r \in R} \frac{\deg(r)}{|Z|}\right)^2 = \frac{1}{N^2} \cdot \frac{|E|^2}{|Z|^2} \ge \frac{N^2}{|Z|}$$

$$Cauchy-Schwarz inequality$$

$$and R = N^2$$

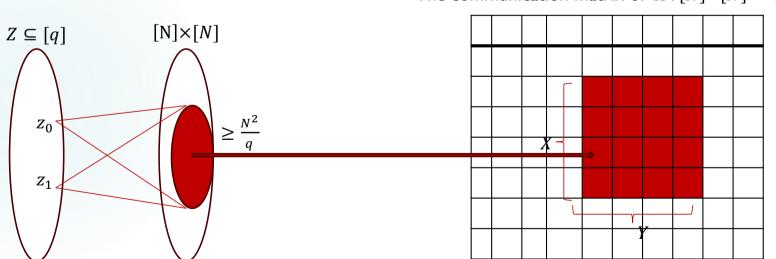
$$|E| = \sum_{r \in R} \deg(r) |E| \ge N^2 \cdot \sqrt{|Z|}$$

Rectangle Lemma

Let $R = \{(x, y): (x, y, z_0) \in E\} \cap \{(x, y): (x, y, z_1) \in E\}$. Then

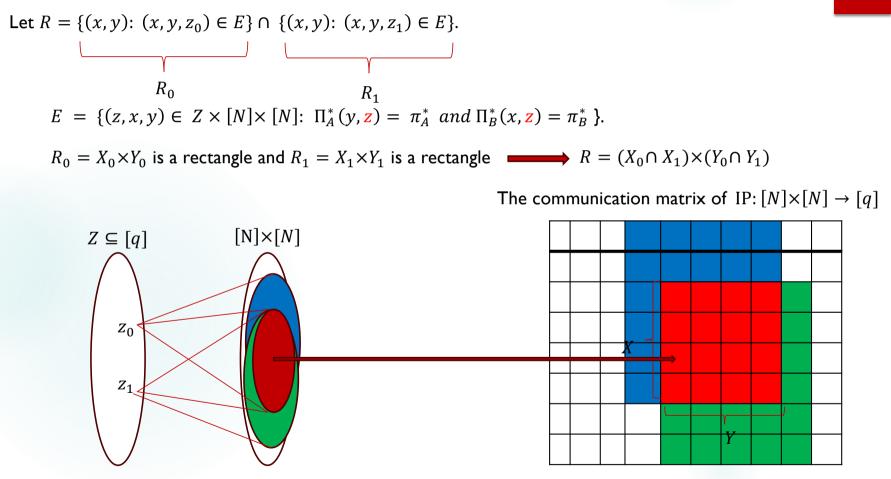
R is a rectangle, i.e., $R = X \times Y$ for some $X, Y \subseteq \{0, 1\}^n$.

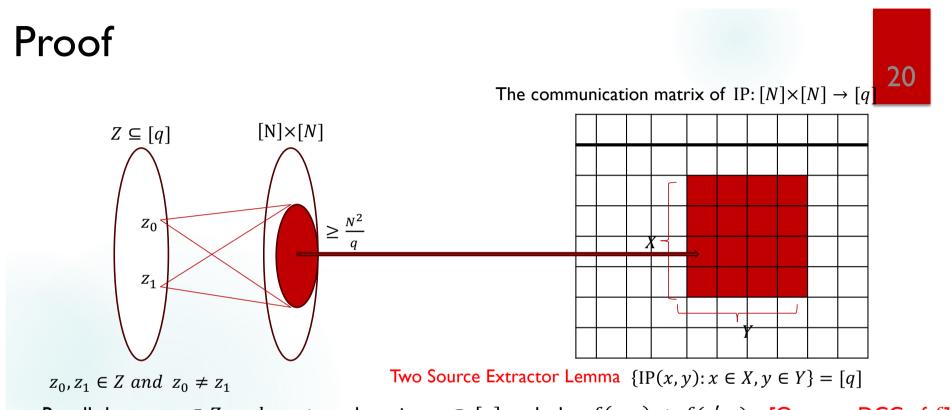
where $E = \{(z, x, y) \in Z \times [N] \times [N]: \Pi_A^*(y, z) = \pi_A^* \text{ and } \Pi_B^*(x, z) = \pi_B^* \}.$



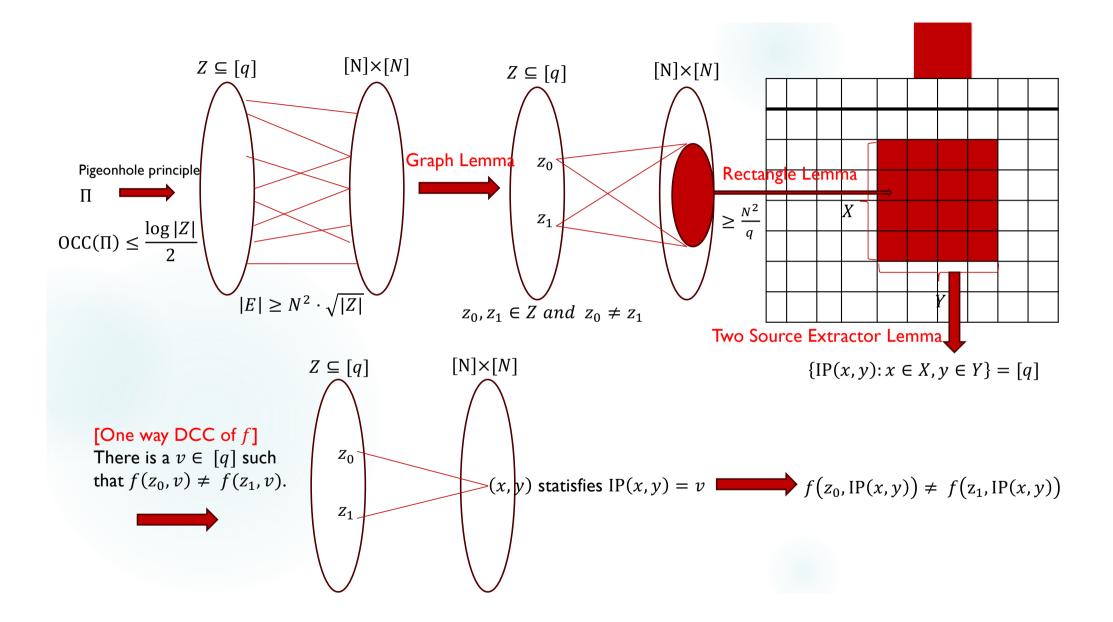
The communication matrix of IP: $[N] \times [N] \rightarrow [q]$

Proof of Rectangle Lemma





- Recall that $z_0, z_1 \in Z$ and $z_0 \neq z_1$, there is a $v \in [q]$ such that $f(z, v) \neq f(z', v)$. [One way DCC of f]
- Since $\{IP(x, y): x \in X, y \in Y\} = [q]$, there is a pair $(x, y) \in X \times Y$ such that IP(x, y) = v. [Two Source Extractor
- We have $f(z_0, IP(x, y)) \neq f(z_1, IP(x, y))$. [One way NOF DCC of $f \circ IP$]



Our contribution

• One way NOF deterministic lifting theorem

For any Boolean function $f : [N] \times [N] \rightarrow \{0,1\}$, we have

 $OCC(f \circ IP) = \Theta(DCC(f))$

 An optimal explicit separation between the randomized and deterministic one-way NOF communication

The deterministic one-way NOF communication complexity of EQ \circ IP is $\Omega(\log N)$, but the randomized one-way NOF communication complexity of EQ \circ IP is O(1).

• A new proof of the $\Omega(n)$ deterministic one-way three-party NOF communication complexity of set disjointness

Open Problems

One way NOF randomized lifting theorem

For any Boolean function $f : [N] \times [N] \rightarrow \{0,1\}$, we have

 $ORCC(f \circ IP) = \Theta(RCC(f))$

 An optimal explicit separation between the randomized and quantum oneway NOF communication

• A proof of the $\Omega(n)$ randomized one-way three-party NOF communication complexity of set disjointness (Best known bound is $\Omega(\sqrt{n})$

